If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+25x-50=0
a = 12; b = 25; c = -50;
Δ = b2-4ac
Δ = 252-4·12·(-50)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-55}{2*12}=\frac{-80}{24} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+55}{2*12}=\frac{30}{24} =1+1/4 $
| (5a+1)=a+9 | | 3x^2-2x-896=0 | | -3c=37 | | −3(t+6)=0 | | x+4/16=5/8+x-1/4 | | 4+2p=36 | | -6n-9n=45 | | (5x+14)+(2x+50)=180 | | t/3−2=2 | | 7(5+2c)+3c=7= | | 3x^2-6x-896=0 | | z4+6=10 | | z4+ 6=10 | | x+4/16=5/8+x-1/7 | | -21(-4m-6.4)=44.8 | | (3/(5x))+(7/(2x))=1 | | (11x-12)+(3x+18)=90 | | 0.1x+0.15(20-x)=(0.12)(20) | | u+3.88=6.71 | | p-7=71 | | 67=3.5q | | 0.10x+0.15(20-x)=(0.12)(20) | | 7x+4x=5 | | -8(x-5)=30-6x | | 0.10x+0.15(20+x)=(0.12)(20) | | 7x^2+8x+45x^2+65=0 | | h+86/2=-5 | | 0.10x+(0.15)(20)=0.12(20+x) | | 2(9)+9x=-18 | | 35x=17 | | e+1.2=2e+1.2=2 | | 2(3x+6)=-21+27 |